Evaluation of CLM4 Solar Radiation Partitioning Scheme Using Remote Sensing and Site Level FPAR Datasets

نویسندگان

  • Kai Wang
  • Jiafu Mao
  • Robert E. Dickinson
  • Xiaoying Shi
  • Wilfred M. Post
  • Zaichun Zhu
  • Ranga B. Myneni
چکیده

This paper examines a land surface solar radiation partitioning scheme, i.e., that of the Community Land Model version 4 (CLM4) with coupled carbon and nitrogen cycles. Taking advantage of a unique 30-year fraction of absorbed photosynthetically active radiation (FPAR) dataset, derived from the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) data set, multiple other remote sensing datasets, and site level observations, we evaluated the CLM4 FPAR’s seasonal cycle, diurnal cycle, long-term trends, and spatial patterns. Our findings show that the model generally agrees with observations in the seasonal cycle, long-term trends, and spatial patterns, but does not reproduce the diurnal cycle. Discrepancies also exist in seasonality magnitudes, peak value months, and spatial heterogeneity. We identify the discrepancy in the diurnal cycle as, due to, the absence of dependence on sun angle in the model. Implementation of sun angle dependence in a one-dimensional (1-D) model is proposed. The need for better relating of vegetation to climate in the model, indicated by long-term trends, is also noted. Evaluation of the CLM4 land surface solar radiation partitioning scheme using remote sensing and site level FPAR datasets provides targets for future development in its representation of this naturally complicated process. OPEN ACCESS Remote Sens. 2013, 5 2858

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Latest MODIS GPP Products across Multiple Biomes Using Global Eddy Covariance Flux Data

The latest MODIS GPP (gross primary productivity) product, MOD17A2H, has great advantages over the previous version, MOD17A2, because the resolution increased from 1000 m to 500 m. In this study, MOD17A2H GPP was assessed using the latest eddy covariance (EC) flux data (FLUXNET2015 Dataset) at eighteen sites in six ecosystems across the globe. The sensitivity of MOD17A2H GPP to the meteorology ...

متن کامل

Validation of MODIS and GEOV1 fPAR Products in a Boreal Forest Site in Finland

Remote sensing of the fraction of absorbed Photosynthetically Active Radiation (fPAR) has become a timely option to monitor forest productivity. However, only a few studies have had ground reference fPAR datasets containing both forest canopy and understory fPAR from boreal forests for the validation of satellite products. The aim of this paper was to assess the performance of two currently ava...

متن کامل

A New Algorithm of the FPAR Product in the Heihe River Basin Considering the Contributions of Direct and Diffuse Solar Radiation Separately

It remains a challenging issue to accurately estimate the fraction of absorbed photosynthetically-active radiation (FPAR) using remote sensing data, as the direct and diffuse radiation reaching the vegetation canopy have different effects for FPAR. In this research, a FPAR inversion model was developed that may distinguish direct and diffuse radiation (the DnD model) based on the energy budget ...

متن کامل

Spatial monitoring of land surface temperature and solar radiation energy using remote sensing data and geo statistics (Case study: Lut desert)

Solar energy is receiving lots of attention because it is one of the cleanest, cheapest and most available energies in the world.but solar radiation in different parts is changing, thus, identifying appropriate locations for implementation of solar energy is necessary. Accordingly the aim of this study was to analyze the potential of solar radiation and land surface temperature on the Loot dese...

متن کامل

Modeling Net Ecosystem Exchange for Grassland in Central Kazakhstan by Combining Remote Sensing and Field Data

Carbon sequestration was estimated in a semi-arid grassland region in Central Kazakhstan using an approach that integrates remote sensing, field measurements and meteorological data. Carbon fluxes for each pixel of 1 × 1 km were calculated as a product of photosynthetically active radiation (PAR) and its fraction absorbed by vegetation (fPAR), the light use efficiency (LUE) and ecosystem respir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013